Pyranose ring conformations in mono- and oligosaccharides: a combined MD and DFT approach.
نویسندگان
چکیده
Among the descriptors of the molecular structure of carbohydrates, the conformation of the pyranose ring is usually the most problematic one to tackle. We present the results of a systematic study oriented at determining the ring-inversion properties of all d-hexopyranoses in the form of monosaccharides, O1-methylated monosaccharides and homotrisaccharides. Contrary to the existing studies, based either on molecular mechanics force fields or on conformational search within ab initio potentials, we combine the structural information from molecular dynamics simulations performed within the GROMOS 56a6CARBO_R force field and use it in a subsequent geometry optimization procedure, performed at the DFT level of theory. This two-step procedure allows avoiding errors resulting from overestimating the contribution of the hydrogen bond-rich, low-energy structures that are not abundant in aqueous solutions. The calculated anomeric ratios and the populations of staggered conformers of the hydroxymethyl group are in satisfactory agreement with the experimental data. Regarding the ring-inversion properties, for the first time, we achieved good agreement of the ab initio-derived data for all hexopyranoses with the experimentally inferred Angyal scheme and with the NMR-inferred populations of ring conformers. The same computational methodology allows determination of the influence of functionalization (methylation or glycosylation) on the ring-inversion properties which includes the influence of the anomeric effect, enhanced upon O1-functionalization. In general, the correlation between ring-inversion properties of unfunctionalized monomers and those of O1-methylated, O1-glycosylated, O4-glycosylated and O1,O4-diglycosylated monomers is qualitatively (but not quantitatively) compatible with that predicted by the classical force fields.
منابع مشابه
BFMP: A Method for Discretizing and Visualizing Pyranose Conformations
We report a new classification method for pyranose ring conformations called Best-fit, Four-Membered Plane (BFMP), which describes pyranose ring conformations based on reference planes defined by four atoms. The method is able to characterize all asymmetrical and symmetrical shapes of a pyran ring, is readily automated, easy to interpret, and maps trivially to IUPAC definitions. It also provide...
متن کاملEncapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملAtomic levers control pyranose ring conformations.
Atomic force microscope manipulations of single polysaccharide molecules have recently expanded conformational chemistry to include force-driven transitions between the chair and boat conformers of the pyranose ring structure. We now expand these observations to include chair inversion, a common phenomenon in the conformational chemistry of six-membered ring molecules. We demonstrate that by st...
متن کاملLanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations.
A novel methodology is presented for evaluating a dynamic ensemble of oligosaccharide conformations by lanthanide-assisted NMR spectroscopy combined with molecular dynamics (MD) simulations. The results obtained using the GM3 trisaccharide demonstrated that pseudocontact shift measurements offer a valuable experimental tool for the validation of MD simulations of highly flexible biomolecules.
متن کاملDFT studies of all fluorothiophenes and their radical cations as candidate monomers for conductive polymers
In this paper, electronic, structural, and spectroscopic properties of mono-, di-, tri-, andtetrafluorothiophenes and their radical cations are studied using the density functional theory andB3LYP method with 6-311++G** basis set. Also the effects of the number and position of thesubstituent on the electrochemical properties of the thiophene ring have been studied usingoptimized structures obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 31 شماره
صفحات -
تاریخ انتشار 2017